Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Language
Year range
1.
Anatomy & Cell Biology ; : 259-267, 2023.
Article in English | WPRIM | ID: wpr-999264

ABSTRACT

Stature is an essential component of biological profile analysis since it determines an individual’s physical identity. Long bone dimensions are generally used to estimate the stature of skeletal remains; however, non-long bones such as the sternum, cranium, and sacrum may be necessary for some forensic situations. This study aimed to generate a regression equation for stature estimation of the skeletal remains in the Thai population. Ten measurements of the sacrum were measured from 200 dry sacra. The results revealed that the maximum anterior breadth (MAB) provided the most accurate stature prediction model among males (correlation coefficient [r]=0.53), standard error of estimation (SEE=5.94 cm), and females (r=0.48, SEE=6.34 cm). For the multiple regression model, the best multiple regression models were stature equals 41.2+0.374 (right auricular surface height [RASH])+1.072 (anterior-posterior outer diameter of S 1 vertebra corpus [APOD])+0.256 (dorsal height [DH])+0.417 (transverse inner diameter of S 1 vertebra corpus [TranID])+0.2 (MAB) with a SEE of 6.42 cm for combined sex. For males, stature equals 63.639+0.478 (MAB)+0.299 (DH)+0.508 (APOD) with a SEE of 5.35, and stature equals 75.181+0.362 (MAB)+0.441 (RASH)+0.132 (maximum anterior height [MAH]) with a SEE of 5.88 cm for females. This study suggests that regression equations derived from the sacrum can be used to estimate the stature of the Thai population, especially when a long bone is unavailable.

2.
Anatomy & Cell Biology ; : 170-178, 2022.
Article in English | WPRIM | ID: wpr-937095

ABSTRACT

Stature estimation is an important process of biological profile analysis for the identification of skeletal remains.In forensic practice, non-long bones might be needed for estimating stature, in case long bones were not recovered or well preserved. This study developed the stature estimation model from dry sterna in a Thai population. The combined length of manubrium and mesosternum (CMM) was the best single stature estimation indicator for males and combined sex samples, whereas the sternal area (SA) was the best stature estimation indicator for females in our study. The best multiple regression analysis models of our study were stature equal 122.685+0.182 (CMM)+0.592 (intercostal length between the third and fourth ribs [ICL34 ]) with a standard error of estimation (SEE) of 6.134 cm for males, stature equal 130.676+0.005 (SA) with SEE of 5.370 cm for females, and stature equal 79.412+0.342 (CMM)+0.506 (corpus sterni width at first sternebra [CSWS1 ])+0.794 (ICL34 ) with SEE of 6.222 cm for unknown sex samples. The results indicated that a sternum can be used for estimating the stature of skeletal remains in a Thai population. However, these models might not be suitable for other populations, especially, in case the suspected stature is over the stature range in our study.

3.
Anatomy & Cell Biology ; : 321-331, 2021.
Article in English | WPRIM | ID: wpr-896691

ABSTRACT

The estimation of sex is an essential component of forensic osteological analyses, and the potential of an incomplete radius for sex determination of human remains is investigated. The present study was conducted on 200 left-right pairs of radial bone from a northern Thai population (100 males and 100 females). The most dimorphic single parameter was maximum head diameter (MDH) with accuracies 92.0% for the right side and 90.5% for the left side. At the distal part of radius, the distal end width of the radius (RDEW) was the best sex indicator, in which the sex classification accuracies were 91.5% and 89.0%, for the right and left sides, respectively. Stepwise discriminant function analysis was performed for all measurements and specified separately to the proximal and distal radius. The circumference of the radial neck, headtuberosity length, MDH, and RDEW were selected for the stepwise procedure as these parameters produced the best correct classification results for both sides. The use of proximal radius for sex estimation was examined, with accuracies of 95.0% and 93.0% for the right and left sides, respectively. The sex classification functions for distal radius provided the accuracies of 92.5% and 89.5%, for the right and left sides, respectively. In summary, the fragments of radius indicated a high ability to estimate sex in the Northern Thai population.

4.
Anatomy & Cell Biology ; : 321-331, 2021.
Article in English | WPRIM | ID: wpr-888987

ABSTRACT

The estimation of sex is an essential component of forensic osteological analyses, and the potential of an incomplete radius for sex determination of human remains is investigated. The present study was conducted on 200 left-right pairs of radial bone from a northern Thai population (100 males and 100 females). The most dimorphic single parameter was maximum head diameter (MDH) with accuracies 92.0% for the right side and 90.5% for the left side. At the distal part of radius, the distal end width of the radius (RDEW) was the best sex indicator, in which the sex classification accuracies were 91.5% and 89.0%, for the right and left sides, respectively. Stepwise discriminant function analysis was performed for all measurements and specified separately to the proximal and distal radius. The circumference of the radial neck, headtuberosity length, MDH, and RDEW were selected for the stepwise procedure as these parameters produced the best correct classification results for both sides. The use of proximal radius for sex estimation was examined, with accuracies of 95.0% and 93.0% for the right and left sides, respectively. The sex classification functions for distal radius provided the accuracies of 92.5% and 89.5%, for the right and left sides, respectively. In summary, the fragments of radius indicated a high ability to estimate sex in the Northern Thai population.

SELECTION OF CITATIONS
SEARCH DETAIL